Scheme of Learning

Year 3

\#MathsEveryoneCan

Contents

- Meet the Characters 3
- Yearly Overview 4
- Spring Blocks
- Block 1 - Number: Multiplication and Division 5
- Block 2 - Measurement: Money 25
- Block 3 - Statistics 37
- Block 4 - Measurement: Length and Perimeter 45
- Block 5 - Number: Fractions 63

Notes and Guidance

Meet the Characters

Children love to learn with characters and our team within the scheme will be sure to get them talking and reasoning about mathematical concepts and ideas. Who's your favourite?

Annie

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
	Number: Place Value			Number: Addition and Subtraction					Number: Multiplication and Division			
品	Number: Multiplication and Division				Stat	stics	Measurement: Length and Perimeter			Number: Fractions		
㐫	Number: Fractions			Measurement: Time			Geometry: Properties of Shape		Measurement: Mass and Capacity			

White
 Spring - Block 1
 Multiplication \& Division

Year 3 | Spring Term | Week 1 to 3 - Number: Multiplication \& Division

Overview

Small Steps

NC Objectives

Recall and use multiplication and division facts for the 3, 4 and 8 multiplication tables.

Write and calculate mathematical statements for multiplication and division using the multiplication tables they know, including for twodigit numbers times one-digit numbers, using mental and progressing to formal written methods.

Solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects.

Year 3 | Spring Term | Week 1 to 3 - Number: Multiplication \& Division

Comparing Statements

Notes and Guidance

Children use their knowledge of multiplication and division facts to compare statements using inequality symbols.

It is important that children are exposed to a variety of representations of multiplication and division, including arrays and repeated addition.

Varied Fluency

Use the array to complete the number sentences.

$$
\begin{aligned}
& 3 \times 4=\square \\
& 4 \times 3=\square \\
& \square \div 3=\square \\
& \square \div 4=\square
\end{aligned}
$$

Use $<,>$ or $=$ to compare.

Mathematical Talk

What other number sentences does the array show?
If you know your 4 times-table, how can you use this to work out your 8 times-table?

What's the same and what's different about 8×3 and 7×4 ?

\square Complete the number sentences.
$5 \times 1<$ \qquad \times \qquad $4 \times 3=$ \qquad $\div 3$

Year 3| Spring Term | Week 1 to 3 - Number: Multiplication \& Division

Comparing Statements

Reasoning and Problem Solving

Whitney says, Do you agree? Can you prove your answer?	Possible answer: She is wrong because they are equal.
True or false? $\begin{aligned} & 6 \times 7<6+6+6+6+6+6+6 \\ & 7 \times 6=7 \times 3+7 \times 3 \\ & 2 \times 3+3>5 \times 3 \end{aligned}$	False True False

Can you find three different ways to complete each number sentence?	Possible answers include:
	$\begin{aligned} & 1 \times 3+1 \times 3<21 \div 3 \\ & 1 \times 3+1 \times 3<24 \div 3 \\ & 1 \times 3+1 \times 3<27 \div 3 \\ & \\ & 24 \div 4<8 \times 4<12 \times 4 \\ & 16 \div 4<5 \times 4<7 \times 4 \\ & 8 \div 4<3 \times 4<4 \times 4 \\ & 4 \times 8>88 \div 8>1 \times 8 \\ & 2 \times 8>80 \div 8>1 \times 8 \\ & 6 \times 8>96 \div 8>1 \times 8 \end{aligned}$

Year 3 | Spring Term | Week 1 to 3 - Number: Multiplication \& Division

Related Calculations

Notes and Guidance

Children use known multiplication facts to solve other multiplication problems.
They understand that because one of the numbers in the calculation is ten times bigger, then the answer will also be ten times bigger.
It is important that children develop their conceptual understanding through the use of concrete manipulatives.

Varied Fluency

Complete the multiplication facts.

\square
The number pieces represent $5 \times$ \qquad $=$ \qquad

If each hole is worth ten, what do the pieces represent?
What is the same and what is different about the place value counters?

If we know $2 \times 6=12$, we also know $2 \times 60=120$
Use this to complete the fact family.
How does this fact help us solve this problem?
If we know these facts, what other facts do we know?
Can you prove your answer using manipulatives?

Complete the fact families for the calculations.

Year 3| Spring Term | Week 1 to 3 - Number: Multiplication \& Division

Related Calculations

Reasoning and Problem Solving

Mo is correct. I
know $3 \times 4=12$,
so if he has $3 \times$
40 then his
answer will be ten
times bigger
because 4 has
become ten times
bigger.
She could use 10,
$20,30,40,60,80$
because 240 is a
multiple of all of
these numbers.
$10 \times 24=240$
$20 \times 12=240$
$30 \times 8=240$
$40 \times 6=240$
$60 \times 4=240$
$80 \times 3=240$

True or false?
 $$
5 \times 30=3 \times 50
$$

Prove it.

Possible response:
Children may represent it with place value counters.

True because they are equal.

Children may explore the problem in a context.
e.g. 5 lots of 30
apples compared to 3 lots of 50 apples.

Year 3 | Spring Term | Week 1 to 3 - Number: Multiplication \& Division

Multiply 2-digits by 1-digit (1)

Notes and Guidance

Children use their understanding of repeated addition to represent a two-digit number multiplied by a one-digit number with concrete manipulatives. They use the formal method of column multiplication alongside the concrete representation. They also apply their understanding of partitioning to represent and solve calculations.
In this step, children explore multiplication with no exchange.

Varied Fluency

There are 21 coloured balls on a snooker table.
How many coloured balls are there on 3 snooker tables?

Use Base 10 to calculate:
21×4 and 33×3

Mathematical Talk

How does multiplication link to addition?
How does partitioning help you to multiply 2-digits by a 1-digit number?

How does the written method match the concrete representation?
\square Complete the calculations to match the place value counters.

Tens	Ones
10	1
10	1
10	1

\square Annie uses place value counters to work out 34×2

Use Annie's method to solve:
23×3
32×3
42×2

Multiply 2-digits by 1-digit (1)

Reasoning and Problem Solving

Alex completes the calculation:		
43×2		Alex has multiplied 4 by 2 rather than 40 by 2
Can you spot her mistake?		
T 0 4 3 \times 2 6 + 8 1 4		

Teddy completes the same calculation as Alex.
Can you spot and explain his mistake?

	T	O
	4	3
\times		2
8	0	6

Dexter says,

Is Dexter correct?

Teddy has written
80 where he should have just put an 8 because he is multiplying 4 tens by 2 which is 8 tens. The answer should be 86

True. Both
multiplications are equal to 84

Children may explore that one number has halved and the other has doubled.

Year 3 | Spring Term | Week 1 to 3 - Number: Multiplication \& Division

Multiply 2-digits by 1-digit (2)

Notes and Guidance

Children continue to use their understanding of repeated addition to represent a two-digit number multiplied by a onedigit number with concrete manipulatives. They move on to explore multiplication with exchange. Each question in this step builds in difficulty.

Mathematical Talk

What happens when we have ten or more ones in a column? What happens when we have twenty or more ones in a column?

How do we record our exchange?
Do you prefer Jack's method or Amir's method?
Can you use either method for all the calculations?

Varied Fluency

\square Jack uses Base 10 to calculate 24×4

Use Jack's method to solve:
13×4

$$
23 \times 4
$$

26×3

- Amir uses place value counters to calculate 16×4

\square
Amir then calculates 5×34

Use Amir's method to solve:
36×6
48×4

Year 3 | Spring Term | Week 1 to 3 - Number: Multiplication \& Division

Multiply 2-digits by 1-digit (2)

Reasoning and Problem Solving

Divide 2-digits by 1-digit (1)

Notes and Guidance

Children divide 2-digit numbers by a 1-digit number by partitioning into tens and ones and sharing into equal groups.

They divide numbers that do not involve exchange or remainders.

It is important that children divide the tens first and then the ones.

Mathematical Talk

How can we partition the number?
How many tens are there?
How many ones are there?
What could we use to represent this number?
How many equal groups do I need?
How many rows will my place value chart have? How does this link to the number I am dividing by?

Varied Fluency

Ron uses place value counters to solve $84 \div 2$

I made 84 using place
value counters and divided them between 2 equal groups.

Use Ron's method to calculate:

$$
84 \div 4 \quad 66 \div 2 \quad 66 \div 3
$$

Eva uses a place value grid and part-whole model to solve $66 \div 3$

Use Eva's method to calculate:

$$
69 \div 3 \quad 96 \div 3 \quad 86 \div 2
$$

Year 3 | Spring Term | Week 1 to 3 - Number: Multiplication \& Division

Divide 2-digits by 1-digit (1)

Reasoning and Problem Solving

Is he correct?
Explain your reasoning.

Dora thinks that 88 sweets can be shared equally between eight people.

Is she correct?

Teddy is incorrect. He has divided 44
by 2 instead of by 4

Dora is correct

 because 88 divided by 8 is equal to 11

Alex uses place value counters to help her calculate $63 \div 3$

She gets an answer of 12 Is she correct?

Alex is incorrect

 because she has not placed counters in the correct columns.It should look like this:

Tens	Ones
\odot	\square
\square	\square
\square	\square

The correct answer is 21

Divide 2-digits by 1-digit (2)

Notes and Guidance

Children divide 2-digit numbers by a 1-digit number by partitioning into tens and ones and sharing into equal groups.

They divide numbers that involve exchanging between the tens and ones. The answers do not have remainders.

Children use their times-tables to partition the number into multiples of the divisor.

Mathematical Talk

Why have we partitioned 42 into 30 and 12 instead of 40 and 2?

What do you notice about the partitioned numbers and the divisor?

Why do we partition 96 in different ways depending on the divisor?

Varied Fluency

Ron uses place value counters to divide 42 into three equal groups.

Use Ron's method to calculate $48 \div 3,52 \div 4$ and $92 \div 8$
\square Annie uses a similar method to divide 42 by 3

Tens	Ones	
10	1	1
10	1	1
10	1	1
10	1	1

Use Annie's method to calculate:

$$
96 \div 8 \quad 96 \div 4 \quad 96 \div 3 \quad 96 \div 6
$$

Year 3| Spring Term | Week 1 to 3 - Number: Multiplication \& Division

Divide 2-digits by 1-digit (2)

Reasoning and Problem Solving

Compare the statements using $<,>$ or $=$

Year 3 | Spring Term | Week 1 to 3 - Number: Multiplication \& Division

Divide 2-digits by 1-digit (3)

Notes and Guidance

Children move onto solving division problems with a remainder.
Links are made between division and repeated subtraction, which builds on learning in Year 2
Children record the remainders as shown in Tommy's method. This notation is new to Year 3 so will need a clear explanation.

Mathematical Talk

How do we know 13 divided by 4 will have a remainder?
Can a remainder ever be more than the divisor?
Which is your favourite method?
Which methods are most efficient with larger two digit numbers?

Varied Fluency

How many squares can you make with 13 lollipop sticks?
There are \qquad lollipop sticks.
There are \qquad groups of 4
There is \qquad lollipop stick remaining.

$13 \div 4=$ \qquad remainder \qquad
Use this method to see how many triangles you can make with 38 lollipop sticks.
\square Tommy uses repeated subtraction to solve $31 \div 4$

Use Tommy's method to solve 38 divided by 3
\square Use place value counters to work out $94 \div 4$
Did you need to exchange any tens for ones?
Is there a remainder?

Tens	Ones

Divide 2-digits by 1-digit (3)

Reasoning and Problem Solving

Which calculation is the odd one out? Explain your thinking.	$64 \div 8$ could be the odd one out as it is the only calculation without a remainder.
$49 \div 8$	Make sure other answers are considered such as $65 \div 3$ because it is the only one being divided by an odd number.

$\left.\begin{array}{|l|l|}\hline \text { Jack has } 15 \text { stickers. } & \begin{array}{l}\text { There are many } \\ \text { solutions, } \\ \text { encourage a } \\ \text { systematic }\end{array} \\ \text { He sorts his stickers into equal groups } \\ \text { aut has some stickers remaining. } \\ \text { How many stickers could be in each } \\ \text { group and how many stickers would be } \\ \text { remaining? }\end{array} \quad \begin{array}{l}\text { e.g. } 2 \text { groups of 7, } \\ \text { remainder 1 } \\ 3 \text { groups of 4, } \\ \text { remainder 3 } \\ 2 \text { groups of 6, } \\ \text { remainder 3 }\end{array}\right]$

Scaling

Notes and Guidance

It is important that children are exposed to problems involving scaling from an early age.
Children should be able to answer questions that use the vocabulary "times as many".
Bar models are particularly useful here to help children visualise the concept. Examples and non-examples should be used to ensure depth of understanding.

Mathematical Talk

Why might someone draw the first bar model? What have they misunderstood?

What is the value of Amir's counters? How do you know?
How many adults are at the concert? How will you work out the total?

Varied Fluency

\square In a playground there are 3 times as many girls as boys.

Which bar model represents the number of boys and girls?
Explain your choice.
\square Draw a bar model to represent this situation.
In a car park there are 5 times as many blue cars as red cars.
\square Eva has these counters

Amir has 4 times as many counters.
How many counters does Amir have?
There are 35 children at a concert.
3 times as many adults are at the concert.
How many people are at the concert in total?

Scaling

Reasoning and Problem Solving

Year 3 | Spring Term | Week 1 to 3 - Number: Multiplication \& Division

How Many Ways?

Notes and Guidance

Children list systematically the possible combinations resulting from two groups of objects. Encourage the use of practical equipment and ensure that children take a systematic approach to each problem.
Children should be encouraged to calculate the total number of ways without listing all the possibilities. e.g. Each T-shirt can be matched with 4 pairs of trousers so altogether $3 \times 4=12$ outfits.

Mathematical Talk

What are the names of the shapes on the shape cards? How do you know you have found all of the ways? Would making a table help?

Without listing, can you tell me how many possibilities there would be if there are 5 different shape cards and 4 different number cards?

Varied Fluency

\square Jack has 3 T-shirts and 4 pairs of trousers. Complete the table to show how many different outfits he can make.

T-shirt	Trousers
Blue	Blue
Blue	Dark blue
Blue	Orange
Blue	Green

\square Alex has 4 shape cards and 3 number cards.

$$
\square \bigcirc \Delta \square \square 2
$$

She chooses a shape card and a number card. List all the possible ways she could do this.

How Many Ways?

Reasoning and Problem Solving

Jack has some jumpers and pairs of trousers. He can make 15 different outfits. How many jumpers could he have and how many pairs of trousers could he have?	He could have: 1 jumper and 15 pairs of trousers. 3 jumpers and 5 pairs of trousers. 15 jumpers and 1 pair of trousers. 5 jumpers and 3 pairs of trousers.

White
 Spring - Block 2
 Money

Overview

Small Steps

NC Objectives

Add and subtract amounts of money to give change, using both $£$ and p in practical contexts.

Year 3 | Spring Term | Week 4 - Measurement: Money

Pounds and Pence

Notes and Guidance

Children need to know the value of each coin and note and understand what these values represent.
They should understand that money can be represented in different ways but still have the same value.
Children will need to be able to add coin values together to find the total amount.

Varied Fluency

Match the amounts that are equal.
Fifteen pounds
Fifteen pence
Fifty pounds
Fifty pence

How much money does the jar contain?

Mathematical Talk

The jar contains £ \qquad and \qquad p.

What is the value of the coin/note?

What does p mean?
Why do we have different values of coins and notes?
What's the difference between $£ 5$ and 5 p?
Use $<,>$ or $=$ to make the statements correct.

Year 3 | Spring Term | Week 4 - Measurement: Money

Pounds and Pence

Reasoning and Problem Solving

$\left.\begin{array}{|l|l|}\hline \text { Rosie has } 5 \text { silver coins in her purse. } & \begin{array}{l}\text { Rosie has 95 } \\ \text { pence in her purse. } \\ \text { She can make 40p with three coins. } \\ \text { She can also make 75p with three coins. } \\ \text { How much money does Rosie have in her } \\ \text { purse? }\end{array}\end{array} \begin{array}{l}\text { two 10p coins and } \\ \text { one 5p coin. }\end{array}\right\}$

Amir has 5 different coins in his wallet.	Greatest: £3 and 80p
	Least: $38 p$

Convert Pounds and Pence

Notes and Guidance

Varied Fluency

What is the total of the coins shown?

Children convert between pounds and pence using the knowledge that $£ 1$ is 100 pence.
They group 100 pennies into pounds when counting money. They apply their place value knowledge and use their number bonds to 100

Can you group any of the coins to make 100 pence?
How many whole pounds do you have?
How many pence are left over?
So there is $£$ \qquad and \qquad p.

Mathematical Talk

How many pennies are there in $£ 1$?
How can this fact help us to convert between pounds and pence?

How could you convert 600p into pounds? How could you convert 620p into pounds?
\square Write the amounts in pounds and pence.

\square Write each amount in pounds and pence.

$$
\text { 165p 234p 199p 112p } 516 p
$$

Year 3 | Spring Term | Week 4 - Measurement: Money

Convert Pounds and Pence

Reasoning and Problem Solving

Add Money

Notes and Guidance

Children add two amounts of money using pictorial representations to support them.

They are encouraged to add the pounds first and then add the pence. Children then exchange the pence for pounds to complete their calculations.

Mathematical Talk

Can you group any of the coins to make a pound?
Can you use estimation to support your calculation?
Why is adding 99 p the same as adding $£ 1$ and taking away 1 p?

Varied Fluency

Mo uses a part-whole model to add money.
£ \qquad and \qquad $p+£$ \qquad and \qquad p
There is E \qquad and 105 p.
$105 \mathrm{p}=£$ \qquad and \qquad p
Altogether there is $£$ ___ and \qquad p.

Use Mo's method to find the total of:

$£ 10$ and 35 p and $£ 4$ and 25 p
£10 and 65p and £9 and 45p
\square What calculation does the bar model show?
Find the total amount of money.

\square A book costs $£ 5$ and 99 p.
A magazine costs $£ 1$ and 75 p.
How much do the book and magazine cost altogether?

Year 3 | Spring Term | Week 4 - Measurement: Money

Add Money

Reasoning and Problem Solving

Dora bought these muffins.	Dora spent $105 p$ or $£ 1$ and $5 p$.
Muffins cost 35p each.	
How much did Dora spend?	Tommy bought 9 muffins. He spent 315p or £3 and 15p.
Tommy bought three times as many muffins as Dora. Tommy spent How many muffins did Tommy buy? How much money did Tommy spend on 210p or £2 and muffins? 10p more than Dora.	
How much more money did Tommy spend than Dora?	

Rosie has $£ 5$
Has she got enough money to buy a car
and two apples?
:---
$85 p+85 p=£ 5$
and $5 p$

| She does not have |
| :--- | :--- |
| enough money. |
| Rosie could buy |

1 car and 2
balloons
1 car, 1 apple and 1
balloon
1 magazine and 2
apples

Subtract Money

Notes and Guidance

Children use different methods to subtract money.
They will see examples where they can physically remove the coins, and examples where they will need to use their knowledge of converting money to exchange $£ 1$ for 100 pence. Children also use number lines to count on or back to calculate the difference between two amounts.

Mathematical Talk

Can we make 50p in a different way to make it easier to subtract 10p physically?
Which number should I place on the number line first? Could I count backwards on the number line?

Varied Fluency

\square Alex has $£ 3$ and 50 p.
She gives $£ 2$ and 10 p to her sister.
How much money does she have left?

$$
£ 3-£ 2=£ \quad 50 p-10 p=\ldots \quad p
$$

Alex has $£$ \qquad and \qquad p remaining.

Tommy has $£ 1$ and 72 p. Rosie has $£ 2$
How much more money does Rosie have than Tommy?

Does this change the difference?
Do we need to exchange any pounds for pence?

Rosie has \qquad p more than Tommy.
\square A T-shirt costs $£ 7$ and 20p.
In a sale, the T-shirt costs $£ 5$ and 40p.
How much has the cost of the T-shirt been reduced by?

Year 3 | Spring Term | Week 4 - Measurement: Money

Subtract Money

Reasoning and Problem Solving

Jack has £2 and 90p. Teddy has three times as much money as Jack.	$\begin{aligned} & \text { Jack: £2 \& 90p } \\ & \text { Teddy: £8 \& 70p } \\ & \text { Rosie: £17 \& 40p } \end{aligned}$
How much more money does Teddy have than Jack?	Teddy has $£ 5$ and 80p more than Jack.
Rosie has twice as much money as Teddy. How much more money does Rosie have	Rosie has £14 and 50p more than Jack.
	Use coins to support children in calculating.

Give Change

Notes and Guidance

Children use a number line and a part-whole model to subtract to find change.
Teachers use coins to practically model giving change. Encourage role-play to give children a context of giving and receiving change.

Mathematical Talk

What do we mean by 'change' in the context of money?
Which method do you find most effective?
How does the part-whole model help to solve the problem?

Varied Fluency

Mo buys a chocolate bar for 37p. He pays with a 50p coin. How much change will he receive?

Use a number line to solve the problems.

- Ron has $£ 1$. He buys a lollipop for 55 p. How much change will he receive?
- Whitney has $£ 5$. She spends $£ 3$ and 60 p. How much change will she receive?

Tommy buys a comic for $£ 3$ and 25p. He pays with a $£ 5$ note.
How much change will he receive?
Use the part-whole model to help you.

Use a part-whole model to solve the problem.

- Eva buys a train for $£ 6$ and 55 p. She pays with a $£ 10$ note. How much change will she receive?

Year 3 | Spring Term | Week 4 - Measurement: Money

Give Change

Reasoning and Problem Solving

Dora spends $£ 7$ and 76 p on a birthday cake.

She pays with a $£ 10$ note. How much change does she get?

The shopkeeper gives her six coins for her change.
What coins could they be?

She receives £2 and $24 p$ change.

There are various answers for which coins it could be, e.g. £1, £1, 10p, 10p, 2p, 2p.

Amir has £4
He buys a pencil for $£ 1$ and 20p and a book for $£ 1$ and 45p.

Which bar model represents the question?
Explain how you know.

Use the correct bar model to help you calculate how much change Amir receives.

The first bar model is correct as the whole is $£ 4$ and we are calculating a part as Amir has spent money.
Amir receives £1 and 35 p change.

White
 Spring - Block 3
 Statistics

Year 3| Spring Term | Week 5 to 6 - Statistics

Overview

Small Steps

NC Objectives

Interpret and present data using bar
 charts, pictograms and tables.

Solve one-step and two-step questions [for example, 'How many more?' and 'How many fewer?'] using information presented in scaled bar charts and pictograms and tables.

Pictograms

Notes and Guidance

Children build on their understanding of pictograms from Year 2. They continue to read and interpret information in order to answer questions about the data. It is important that children understand the value of each symbol used and what it means when half a symbol is used.

Children construct pictograms and choose an appropriate key. Encourage children to carry out their own data collection.

Mathematical Talk

What is each symbol worth?
What does half of the symbol represent? Is it always possible to use half of a symbol? Why?

What other questions could you ask about the pictogram?
What would each symbol represent in your pictogram? Have you used the same key as a friend? Could it be represented in different ways?

Varied Fluency

4 classes are recording how many books they read in a week.
Here are the results of how many books they read last week.

- Which class read the most books?
- Which class read the least books?
- How many more books did Class 4 read than Class 2?
\square Complete the pictogram using the information.
- Group 2 collected 40 apples.
- Group 4 collected half as many apples as Group 1
- Group 5 collected 20 more apples than Group 3
How many apples did each group collect?

\square Class 3 are counting the colour of cars that pass the school.

Red	Blue	Black	Silver	White	Other
12	6	14	10	14	2

Draw a pictogram to represent their findings.

Year 3| Spring Term | Week 5 to 6 - Statistics

Pictograms

Reasoning and Problem Solving

What's the same and what's different about their pictograms? Whose pictogram do you prefer and why?

Possible answer:

Same
image/symbol for key, same total of eggs, different values for the key...

Bar Charts

Notes and Guidance

Children interpret information in pictograms and tally charts in order to construct bar charts. They interpret information from bar charts and answer questions relating to the data.

Children read and interpret bar charts with scales of 1, 2, 5 and 10. They decide which scale will be the most appropriate when drawing their own bar charts.

Mathematical Talk

What's the same and what's different about the pictogram and the bar chart?

How does the bar chart help you understand the information?
Which scale should we use? How can we decide whether to have a scale going up in intervals of $1,2,5$ or 10 ?

What other questions could you ask about the bar chart?

Varied Fluency

Use the information from the pictogram to complete the bar chart.

A bar chart to show the number of cupcakes eaten

Group

The bar chart shows how many children attend after school clubs.

Here is a tally chart showing the number of children in each sports club.
Draw a bar chart to represent the data.

Sport	Tally	Total		
Football	HH HH HH	15		
Tennis	HH HHY II\\|			
Rugby	HH HH HH \\|\|			
Cricket	HH HH II			
Basketball	HH才 \\|			

Year 3 | Spring Term | Week 5 to 6 - Statistics

Bar Charts

Reasoning and Problem Solving

Which would be more suitable to
represent this information, a bar chart or
a pictogram?
Explain why.

Child	Number of Skips in 30 Seconds
Teddy	12
Annie	15
Whitney	17
Ron	8

Possible answer:

I think a bar chart would be more suitable because in a pictogram you would need to draw symbols representing 1 or 2 which would make it less efficient. Children may draw both to experiment which representation is clearer.

Tables

Notes and Guidance

Children interpret information from tables to answer one and two-step problems.

They use their addition and subtraction skills to answer questions accurately and ask their own questions about the data in tables.

Mathematical Talk

What information can we gather from the table?
Can you explain to a friend how to read the table?
Where do we need to use tables in real life?
What other questions could I ask and answer using the information in the table?

Varied Fluency

The table shows which sports children play.

	Whitney	Jack	Eva	Mo	Teddy	Annie
Football	\checkmark		\checkmark	\checkmark		\checkmark
Rugby			$\sqrt{ }$		$\sqrt{ }$	
Tennis	$\sqrt{ }$	$\sqrt{ }$		$\sqrt{ }$		\checkmark
Cricket			$\sqrt{ }$		$\sqrt{ }$	
Basketball		$\sqrt{ }$	$\sqrt{ }$	\checkmark		\checkmark

How many children play tennis?
Which sports does Mo play?
Which children play football and tennis?
Which child plays the most sport?
The table shows the increase in bus ticket prices.

- The cost of Ron's new ticket is 60p. How much was his ticket last year? How much has the price increased by?
- Which ticket price has increased the most from 2016 to 2017? Which ticket price has increased the least?

$1^{\text {st }}$ January	
2016	2017
$44 p$	$49 p$
$56 p$	$60 p$
$64 p$	$69 p$
$76 p$	$85 p$
$85 p$	$93 p$
$98 p$	$£ 1.03$
$£ 1.05$	$£ 1.11$

Year 3 | Spring Term | Week 5 to 6 - Statistics

Tables

Reasoning and Problem Solving

How many questions can you create for
your partner about this table?

Day	Number of hours shop is open
Monday	8
Tuesday	8
Wednesday	4
Thursday	10
Friday	7
Saturday	12

Possible answers:

How many hours does the shop open for in total? Which day does it open the longest?
How many more hours does the shop open for on Saturday than
Thursday?
Which day was the shop open the
shortest amount of time?

Eva has created a table to show how many boys and girls took part in after school clubs last week.

Day	Boys	Girls
Monday	11	9
Tuesday	18	12
Wednesday	13	11
Thursday	8	8
Friday	9	7

Eva says,
106 boys took part in after school clubs last week.

Is Eva correct?
Explain why.

Possible answer:

Eva is incorrect.
She has counted all the children rather than just the boys. 59 boys took part in after school clubs last week.

White
 Spring - Block 4
 Length \& Perimeter

Year 3 | Spring Term | Week 7 to 9 - Measurement: Length \& Perimeter

Overview

Small Steps

NC Objectives

Measure, compare, add and subtract: lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$); mass (kg/g); volume/capacity (l/ml).

Measure the perimeter of simple 2D shapes.

Year 3 | Spring Term | Week 7 to 9 - Measurement: Length \& Perimeter

Measure Length

Notes and Guidance

Children are introduced to millimetres for the first time and build on their understanding of centimetres and metres.

Children use different measuring equipment including rulers, tape measures, metre sticks and trundle wheels. They discuss which equipment is the most appropriate depending on the object they are measuring.

Mathematical Talk

What would be the best equipment to measure \qquad with? (e.g. tape measure, ruler, metre stick)

What do we have to remember when using a ruler to measure? Which unit of measurement are we going to use to measure? Centimetres or millimetres?

What unit of measure would be best to measure \qquad ?

Varied Fluency

Measure the lines to the nearest centimetre.
Can you measure the lines in millimetres?

\square What unit of measurement would you use to measure these real life objects? Millimetres, centimetres or metres?

Fingernail	Eraser
Height of a house	Length of a playground

\square What is the length of each pencil?

Year 3 | Spring Term | Week 7 to 9 - Measurement: Length \& Perimeter

Measure Length

Reasoning and Problem Solving

Whitney's ruler is broken. How could she use it to still measure items?	Possible answer: She could start from a different number and count on.
Tommy thinks that this chocolate bar is 4 cm long. Is he correct?	He is incorrect because he has not placed the chocolate bar at 0 , he has put it at the end of the ruler.
Convince me.	

Dexter says the car is 5 cm

Annie says the car is 4 cm 5 mm

Who is correct?
Who is incorrect?
Explain why.

Dexter is correct.
The other two children have not lined up the ruler correctly: Eva has started at 1 cm and 5 mm instead of O and Annie has started at the end of the ruler.

Equivalent Lengths - m \& cm

Notes and Guidance

Children recognise that 100 cm is equivalent to 1 metre. They use this knowledge to convert other multiples of 100 cm into metres and vice versa.

When looking at lengths that are not multiples of 100, they partition the measurement and convert into metres and centimetres. At this stage, children do not use decimals. This is introduced in Year 4.

Mathematical Talk

If there are 100 cm in 1 metre, how many centimetres are in 2 metres? How many centimetres are in 3 metres?

Do we need to partition 235 cm into hundreds, tens and ones to convert it to metres? Is it more efficient to partition it into two parts? What would the two parts be?

If 100 cm is equal to one whole metre, what fraction of a metre would 50 cm be equivalent to? Can you show me this in a bar model?

Varied Fluency

\square
If $\mathrm{a}=10 \mathrm{~cm}$, calculate the missing measurements.

$\mathrm{b}=$ \qquad cm
$c=$ \qquad cm

1 metre $=$ \qquad cm
\square Can you match the equivalent measurements?

100 cm
5 m
300 cm
2 m
900 centimetres
200 cm
500 cm
1 metre
3 m

\square Eva uses this diagram to convert between centimetres and metres.
Use Eva's method to convert:

- 130 cm
- 230 cm
- 235 cm
- 535 cm

49 • 547 cm

120 cm	
100 cm	20 cm
1 m	20 cm
1 m 20 cm	

Year $3 \mid$ Spring Term | Week 7 to 9 - Measurement: Length \& Perimeter

Equivalent Lengths - m \& cm

Reasoning and Problem Solving

Mo and Alex each have a skipping rope.	Alex is correct
	skipping rope is 250 cm long which is 30 cm more than 220 cm .
Mo says,	
Who is correct? Explain your answer.	

Three children are partitioning 754 cm
Teddy says,

Whitney says,

Jack says,

Who is correct?
Explain why.

Whitney and Jack are both correct.
Teddy has
incorrectly
converted from
cm to m when
partitioning.

Equivalent Lengths - mm \& cm

Notes and Guidance

Children recognise that 10 mm is equivalent to 1 cm . They use this knowledge to convert other multiples of 10 mm into centimetres and vice versa.

When looking at lengths that are not multiples of 10 , they partition the measurement and convert into centimetres and millimetres. At this stage, children do not use decimals. This is introduced in Year 4.

Mathematical Talk

What items might we measure using millimetres rather than centimetres?

If there are 10 mm in 1 cm , how many mm would there be in 2 cm ?

How many millimetres are in $\frac{1}{2} \mathrm{~cm}$?
How many different ways can you partition 54 cm ?

Varied Fluency

\square Fill in the blanks.

There are \qquad mm in 1 cm .

$\mathrm{a}=\ldots \quad \mathrm{cm}$ \qquad mm
$b=$ \qquad cm \qquad mm
c = \qquad cm \qquad mm
$=$ \qquad
\qquad mm

\square
Measure different items around your classroom.
Record your measurements in a table in cm and mm , and just mm .
Complete the part whole models.

Year 3 | Spring Term | Week 7 to 9 - Measurement: Length \& Perimeter

Equivalent Lengths - mm \& cm

Reasoning and Problem Solving

Rosie is measuring a sunflower using a 30 cm ruler.
Rosie says,

Rosie is incorrect.
Explain what mistake she might have made.
How tall is the sunflower?

Rosie is incorrect. She has used the wrong unit on the ruler.
The sunflower is 15 cm tall or 150 mm tall.

Ron is thinking of a measurement. Use his clues to work out which measurement he is thinking of.

Ron is thinking of 84 mm (8 cm and 4 mm)

Compare Lengths

Notes and Guidance

Children compare and order lengths based on measurements in mm, cm and m .

They use their knowledge of converting between units of measurement to help them compare and order. Encourage children to convert all the measurements to the same unit of length before comparing.

Mathematical Talk

Is descending order, shortest to tallest or tallest to shortest?
Can you order the children's heights in ascending order?
Why does converting to the same unit of length, make it easier to compare lengths?

Estimate which child's tower you think will be the tallest. Explain why.

Varied Fluency

\square Complete the sentences.

Child	Height
Rosie	109 cm
Amir	1 m 5 cm
Jack	135 cm
Dora	1 m 45 mm

Rosie is \qquad than Jack. Jack is \qquad than Dora.

Amir is \qquad than Rosie.

Dora is \qquad than Amir.
\square Four friends are building towers.
Eva's tower is 22 cm and 7 mm tall.
Teddy's tower is 22 cm tall.
Annie's tower is 215 mm tall.
Dexter's tower is 260 mm tall.
Order the children's towers in descending order.
\square

\square \square

Using a ruler, measure the width of 5 different books to the nearest mm . Record your results in a table, then compare and order them.

Year $3 \mid$ Spring Term | Week 7 to 9 - Measurement: Length \& Perimeter

Compare Lengths

Reasoning and Problem Solving

Always, Sometimes, Never?

mm lengths are smaller than cm lengths.

Possible answer:

Sometimes.
E.g. 1 mm is
smaller than 1 cm
but 70 mm is larger than 3 cm .

Are any of the lengths equivalent?

1 m 65 cm ,
165 cm and 165 m
are longer than a metre.

165 mm,
16 cm 5 mm and
1 cm 65 mm are
shorter than a metre.

1 m 65 cm is equivalent to
165 cm .
165 mm is
equivalent to
16 cm 5 mm .

Year 3 | Spring Term | Week 7 to 9 - Measurement: Length \& Perimeter

Add Lengths

Notes and Guidance

Children add lengths given in different units of measurement. They convert measurements to the same unit of length to add more efficiently. Children should be encouraged to look for the most efficient way to calculate and develop their mental addition strategies.

This step helps prepare children for adding lengths when they calculate the perimeter.

Mathematical Talk

How did you calculate the height of the tower?
Estimate which route is the shortest from Tommy's house to his friend's house.

Which route is the longest?
Why does converting the measurements to the same unit of length make it easier to add them?

Varied Fluency

\square Ron builds a tower that is 14 cm tall. Jack builds a tower than is 27 cm tall. Ron puts his tower on top of Jack's tower. How tall is the tower altogether?

Tommy needs to travel to his friend's house. He wants to take the shortest possible route. Which way should Tommy go?

Miss Nicholson measured the height of four children in her class. What is their total height?

Year 3 | Spring Term | Week 7 to 9 - Measurement: Length \& Perimeter

Add Lengths

Reasoning and Problem Solving

Eva is building a tower using these	Possible answer:
blocks.	Four 100 mm blocks and two 80 mm blocks.
How many different ways can she build a tower measuring 56 cm ? Can you write your calculations in mm and cm ?	There are many other solutions.

Eva thinks their total height is 4 m and 55 cm

Jack thinks their total height is 5 m and 89 cm

Who is correct? Prove it.

Jack is correct.

Eva has not

included her own
height.

Subtract Lengths

Notes and Guidance

Children use take-away and finding the difference to subtract lengths. Children should be encouraged to look for the most efficient way to calculate and develop their mental subtraction strategies.

This step will prepare children for finding missing lengths within perimeter.

Mathematical Talk

What is the difference between the length of the two objects? How would you work it out?

How are Alex's models different? How are they the same?
Which model do you prefer? Why?
What is the most efficient way to subtract mixed units?

Varied Fluency

\square Find the difference in length between the chew bar and the pencil.

The chew bar is \qquad cm long. The pencil is \qquad cm long. The chew bar is ___ cm longer than the pencil.

Alex has 5 m of rope. She uses 1 m and 54 cm to make a skipping rope. She works out how much rope she has left using two different models.

$$
\begin{aligned}
& 5 \mathrm{~m}-1 \mathrm{~m}=4 \mathrm{~m} \\
& 4 \mathrm{~m}-54 \mathrm{~cm}=3 \mathrm{~m} 46 \mathrm{~cm} \\
& 200 \mathrm{~cm}-154 \mathrm{~cm}=46 \mathrm{~cm} \\
& 3 \mathrm{~m}+46 \mathrm{~cm}=3 \mathrm{~m} 46 \mathrm{~cm}
\end{aligned}
$$

Use the models to solve:

- Mrs Brook's ball of wool is 10 m long. She uses 4 m and 28 cm to knit a scarf. How much does she have left?
- A roll of tape is 3 m long. If I use 68 cm of it wrapping presents, how much will I have left?

Year 3 | Spring Term | Week 7 to 9 - Measurement: Length \& Perimeter

Subtract Lengths

Reasoning and Problem Solving

A bike race is 950 m long. Teddy cycles 243 m and stops for a break.
He cycles another 459 m and stops for another break.
How much further does he need to cycle to complete the race?

A train is 20 metres long.
A car is 15 metres shorter than the train. A bike is 350 cm shorter than the car.

Calculate the length of the car.
Calculate the length of the bike.
How much longer is the train than the bike?

Teddy needs to cycle 248 metres further.

The car is 5 m and the bike is 150 cm or 1 m 50 cm .

The train is 18 metres and 50 cm longer than the bike.

Annie has a 3 m roll of ribbon.

She is cutting it up into 10 cm lengths. How many lengths can she cut?

Annie gives 240 cm of ribbon to Rosie. How much ribbon does she have left? How many 10 cm lengths does she have left?

Annie can cut it in to 30 lengths.

Annie has 60 cm left.
She has 6 lengths left.

Measure Perimeter

Notes and Guidance

Children are introduced to perimeter for the first time. They explore what perimeter is and what it isn't.

Children measure the perimeter of simple 2-D shapes. They may compare different 2-D shapes which have the same perimeter.

Children make connections between the properties of 2-D shapes and measuring the perimeter.

Mathematical Talk

What is perimeter?
Which shape do you predict will have the longest perimeter? Does it matter where you start when you measure the length of the perimeter? Can you mark the place where you start and finish measuring?
Do you need to measure all the sides of a rectangle to find the perimeter? Explain why.

Varied Fluency

Using your finger, show me the perimeter of your table, your book, your whiteboard etc.

Tick the images where you can find the perimeter.

Explain why you can't find the perimeter of some of the images.
Use a ruler to measure the perimeter of the shapes.

Year 3 | Spring Term | Week 7 to 9 - Measurement: Length \& Perimeter

Measure Perimeter

Reasoning and Problem Solving

Calculate Perimeter

Notes and Guidance

Children use their understanding of the properties of shape to calculate the perimeter of simple 2-D shapes.

It is important to note they will not explore the formula to find the perimeter of a rectangle at this point.

They explore different methods for calculating the perimeter of a shape. For example, they may use repeated addition or they may make connections to multiplication.

Mathematical Talk

How can we calculate the perimeter of each shape?
Can we calculate the perimeter using a different method? What is the same about the two methods? What is different? How can we work out the length of the missing side? What other information do we know about the rectangle? Can we write on the lengths of all the sides?

Varied Fluency

\square Calculate the perimeter of the shapes.

Can you find more than one way to calculate the perimeter?
\square Use two different methods to calculate the perimeter of the squares.

\square What is the length of the missing side?

Calculate Perimeter

Reasoning and Problem Solving

Teddy says,	You only need to know the length of one side for the
square and the	
the length need to know side of	
these 2-D shapes to	
pentagon as all	
the sides are the the perimeter.	
same.	
However, Teddy is	
wrong because for	
the rectangle you	
need to know two	
lengths and for the	
triangle you need	
to know all of	
them.	

Each side of this shape is of equal length. The perimeter is 60 cm . How long is each side?	The shape has 10 sides so the length of each side is 6 cm
How many different rectangles can you draw with a perimeter of 20 cm ?	There are 5 different rectangles. 1 cm by 9 cm 2 cm by 8 cm 3 cm by 7 cm 4 cm by 6 cm 5 cm by 5 cm

White
 Spring - Block 5
 Rose
 Fractions

Year 3 | Spring Term | Week 10 to 11 - Number: Fractions

Overview

Small Steps

NC Objectives

Count up and down in tenths; recognise that tenths arise from dividing an object into 10 equal parts and in dividing one-digit numbers or quantities by 10

Recognise and use fractions as numbers: unit fractions and non-unit fractions with small denominators.

Recognise, find and write fractions of a discrete set of objects: unit fractions and non-unit fractions with small denominators.

Solve problems that involve all of the above.

Unit and Non-unit Fractions

Notes and Guidance

Children recap their understanding of unit and non-unit fractions from Year 2. They explain the similarities and differences between unit and non-unit fractions.

Children are introduced to fractions with denominators other than 2, 3 and 4, which they used in Year 2. Ensure children understand what the numerator and denominator represent.

Mathematical Talk

What is a unit fraction?
What is a non-unit fraction?
Show me $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}$ What's the same? What's different?
What fraction is shaded? What fraction is not shaded?
What is the same about the fractions? What is different?

Varied Fluency

Complete the sentences to describe the images.

__ out of \qquad equal parts are shaded.

of the shape is shaded.
Shade $\frac{1}{5}$ of the circle.

Shade $\frac{3}{5}$ of the circle

Circle $\frac{1}{5}$ of the beanbags.
Circle $\frac{3}{5}$ of the beanbags.

What's the same and what's different about $\frac{1}{5}$ and $\frac{3}{5}$?
\square Complete the sentences.
A unit fraction always has a numerator of \qquad than \qquad An example of a unit fraction is \qquad _

Can you draw a unit fraction and a non-unit fraction with the same denominator?

Unit and Non-unit Fractions

Reasoning and Problem Solving

True or False?

$\frac{1}{3}$ of the shape is shaded.

False, one quarter is shaded. Ensure when counting the parts of the whole that children also count the shaded part.

Sort the fractions into the table.
Fractions equal to one whole
Fractions less than one whole
Unit fractions
Non-unit fractions

Are there any boxes in the table empty? Why?

$\frac{3}{4}$	$\frac{3}{5}$	$\frac{1}{3}$	$\frac{1}{4}$	$\frac{2}{2}$	$\frac{4}{4}$	$\frac{2}{5}$	$\frac{1}{2}$

Top left: Empty
Top right: $\frac{1}{3}, \frac{1}{4}$ and
$\frac{1}{2}$
Bottom left: $\frac{2}{2}$ and
$\frac{4}{4}$
Bottom right: $\frac{3}{4}, \frac{3}{5}$
and $\frac{2}{5}$
There are no unit fractions that are equal to one whole other than $\frac{1}{1}$ but this isn't in our list.

Making the Whole

Notes and Guidance

Children look at whole shapes and quantities and see that when a fraction is equivalent to a whole, the numerator and denominator are the same.

Building on using part-whole model with whole numbers, children use the models to partition the whole into fractional parts.

Mathematical Talk

Is a fraction always less than one?
When the fraction is equivalent to one, what do you notice about the numerator and denominator?

In the counter activity, what's the same about the part-whole models? What's different?

Varied Fluency

\square Complete the missing information.

1 whole is the same as
\square Complete the sentences to describe the apples.

$$
{ }_{\square}^{\text {of the apples are red. }}
$$

of the apples are green.

Use 8 double sided counters.
Drop the counters on to the table, what fraction of the counters are red? What fraction of the counters are yellow? What fraction represents the whole group of counters?
Complete part-whole models to show your findings.

Year 3 | Spring Term | Week 10 to 11 - Number: Fractions

Making the Whole

Reasoning and Problem Solving

Does Teddy have any pizza left? Explain your answer.	No because $\frac{6}{6}$ is equal to one whole, so Ted has eaten all of his pizza.
Complete the sentence. When a fraction is equal to a whole, the numerator and the denominator are \qquad	The same/equal Children may draw a range of pictures to prove this statement.
Use pictures to prove your answer.	

Rosie is drawing bar models to represent a whole.
She has drawn a fraction of each of her bars.

Can you complete Rosie's bar models?

Tenths

Notes and Guidance

Children explore what a tenth is. They recognise that tenths arise from dividing one whole into 10 equal parts.

Children represent tenths in different ways and use words and fractions to describe them. For example, one tenth and $\frac{1}{10}$

Varied Fluency

\square If the frame represents 1 whole, what does each box represent?
Use counters to represent:

- One tenth
- Two tenths
- Three tenths

- One tenth less than eight tenths

Identify what fraction of each shape is shaded.
Give your answer in words and as a fraction.

Mathematical Talk

e.g.

Three tenths $\frac{3}{10}$

How many tenths make the whole?
How many tenths are shaded?
How many more tenths do I need to make a whole?
When I am writing tenths, the \qquad is always 10

How are fractions linked to division?

Year 3 | Spring Term | Week 10 to 11 - Number: Fractions

Tenths

Reasoning and Problem Solving

Odd One Out

The marbles are the odd one out because they represent 8 or eighths. All of the other images have a whole which has been split into ten equal parts.

Count in Tenths

Notes and Guidance

Children count up and down in tenths using different representations.

Children also explore what happens when counting past $\frac{10}{10}$ They are not required to write mixed numbers, however children may see the $\frac{11}{10}$ as $1 \frac{1}{10}$ due to their understanding of 1 whole.

Mathematical Talk

Let's count in tenths. What comes next? Explain how you know. If I start at __ tenths, what will be next?

When we get to $\frac{10}{10}$ what else can we say? What happens next?

Varied Fluency

The counting stick is worth 1 whole. Label each part of the counting stick. Can you count forwards and backwards along the counting stick?

\square Continue the pattern in the table.

- What comes between $\frac{4}{10}$ and $\frac{6}{10}$?
- What is one more than $\frac{10}{10}$?
- If I start at $\frac{8}{10}$ and count back $\frac{4}{10}$, where will I stop?

Complete the sequences.

Year 3 | Spring Term | Week 10 to 11 - Number: Fractions

Count in Tenths

Reasoning and Problem Solving

Tenths as Decimals

Notes and Guidance

Children are introduced to tenths as decimals for the first time. They compare fractions and decimals written as words, in fraction form and as decimals and link them to pictorial representations.

Children learn that the number system extends to the right of the decimal point into the tenths column.

Mathematical Talk

What is a tenth?

Varied Fluency

\square Complete the table.

Image		Words	Fraction	Decimal		
					One tenth	$\frac{1}{10}$

\square Write the fractions and decimals shown.

How many different ways can we write a tenth?
What does equivalent mean?
What is the same and what is different about decimals and fractions?

Can you represent this decimal pictorially?
${ }_{3}$ Can you write the decimal as a fraction?

Year 3 | Spring Term | Week 10 to 11 - Number: Fractions

Tenths as Decimals

Reasoning and Problem Solving

Place the decimals and fractions on the number line.

Fractions on a Number Line

Notes and Guidance

Varied Fluency

Children use a number line to represent fractions beyond one whole. They count forwards and backwards in fractions.

Children need to know how to divide a number line into specific fractions i.e. when dividing into quarters, we need to ensure our number line is divided into four equal parts.

Mathematical Talk

How many equal parts has the number line been divided into?

What does each interval represent?
How are the bar model and the number line the same? How are they different?
How do we know where to place $\frac{1}{5}$ on the number line?
How do we label fractions larger than one.

Show $\frac{1}{5}$ on the number line. Use the bar model to help you.

$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$

0

\square The number line has been divided into equal parts. Label each part correctly.

4 Divide the number line into eighths.
Can you continue the number line up to 2 ?

Year 3 | Spring Term | Week 10 to 11 - Number: Fractions

Fractions on a Number Line

Reasoning and Problem Solving

Eva has drawn a number line.	Tommy is correct because Eva has missed 1 whole out.
\square \square \square \square \square \square \square \square 0 $\frac{1}{4}$ $\frac{2}{4}$ $\frac{3}{4}$ 1 1	
Tommy says it is incorrect.	
Do you agree with Tommy?	
Explain why. Can you draw the next three fractions?	

Alex and Jack are counting up and down in thirds.

Alex starts at $5 \frac{1}{3}$ and counts backwards.
Jack starts at $3 \frac{1}{3}$ and counts forwards.
What fraction will they get to at the same time?

They will reach $4 \frac{1}{3}$

Fraction of an Amount (1)

Notes and Guidance

Children find a unit fraction of an amount by dividing an amount into equal groups.

They build on their understanding of division by using place value counters to find fractions of larger quantities including where they need to exchange tens for ones.

Mathematical Talk

Which operation do we use to find a fraction of an amount?
How many equal groups do we need?
Which part of the fraction tells us this?
How does the bar model help us?

Varied Fluency

Find $\frac{1}{5}$ of Eva's marbles. (1)(1)(1)(1)(1)(1) (1)(1)(1)(1)(1)

I have divided the marbles into \square equal groups.

There are \square marbles in each group.
$\frac{1}{5}$ of Eva's marbles is \square marbles.
\square Dexter has used a bar model and counters to find $\frac{1}{4}$ of 12

OOODOODoOpo

Use Dexter's method to calculate:
$\frac{1}{6}$ of $12 \quad \frac{1}{3}$ of $12 \quad \frac{1}{3}$ of $18 \quad \frac{1}{9}$ of 18
\square Amir uses a bar model and place value counters to find one quarter of 84

Use Amir's method to find:
$\frac{1}{3}$ of $36 \quad \frac{1}{3}$ of $45 \quad \frac{1}{5}$ of 65
77

Year 3 | Spring Term | Week 10 to 11 - Number: Fractions

Fraction of an Amount (1)

Reasoning and Problem Solving

Whitney has 12 chocolates.	
On Friday, she ate $\frac{1}{4}$ of her chocolates	
and gave one to her mum.	Whitney has two chocolates left. On Saturday, she ate $\frac{1}{2}$ of her remaining chocolates, and gave one to her brother.
On Sunday, she ate $\frac{1}{3}$ of her remaining chocolates.	
How many chocolates does Whitney have left?	

Fill in the Blanks

$$
\begin{aligned}
& \frac{1}{3} \text { of } 60=\frac{1}{4} \text { of } \\
& \frac{1}{\square} \text { of } 50=\frac{1}{5} \text { of } 25
\end{aligned}
$$

Fraction of an Amount (2)

Notes and Guidance

Varied Fluency

Children need to understand that the denominator of the fraction tells us how many equal parts the whole will be divided into. E.g. $\frac{1}{3}$ means dividing the whole into 3 equal parts. They need to understand that the numerator tells them how many parts of the whole there are. E.g. $\frac{2}{3}$ means dividing the whole into 3 equal parts, then counting the amount in 2 of these parts.

Mathematical Talk

What does the denominator tell us?
What does the numerator tell us?
What is the same and what is different about two thirds and two fifths?

How many parts is the whole divided into and why?
\square Find $\frac{2}{5}$ of Eva's marbles.
I have divided the marbles into \square equal groups.

There are \square marbles in each group.
$\frac{2}{5}$ of Eva's marbles is \square marbles.
\square Dexter has used a bar model and counters to find $\frac{3}{4}$ of 12
000000000000
Use Dexter's method to calculate:
$\frac{5}{6}$ of $12 \quad \frac{2}{3}$ of $12 \quad \frac{2}{3}$ of $18 \quad \frac{7}{9}$ of 18
\square Amir uses a bar model and place value counters to find three quarters of 84

Use Amir's method to find:
$\frac{2}{3}$ of $36 \quad \frac{2}{3}$ of $45 \quad \frac{3}{5}$ of 65
79

Year 3 | Spring Term | Week 10 to 11 - Number: Fractions

Fraction of an Amount (2)

Reasoning and Problem Solving

This is $\frac{3}{4}$ of a set of beanbags.

Ron has £28
On Friday, he spent $\frac{1}{4}$ of his money.
On Saturday, he spent $\frac{2}{3}$ of his remaining money and gave $£ 2$ to his sister.

On Sunday, he spent $\frac{1}{5}$ of his remaining money.

How much money does Ron have left?
What fraction of his original amount is this?

Ron has £4 left.
This is $\frac{1}{7}$ of his original amount.

Fraction of an Amount (3)

Notes and Guidance

Children will apply their knowledge and understanding of fractions to solve problems in various contexts.

They recap and build their understanding of different measures.

Mathematical Talk

Do we need to make an exchange?
Can we represent the problem in a bar model?
When finding $\frac{5}{6}$, what will we need to do and why?
What is the whole? How can we represent this problem?

Varied Fluency

Ron has $£ 3$ and 50p
He wants to give half of his money to his brother.
How much would his brother receive?

A bag of sweets weighs 240 g
There are 4 children going to the cinema, each receives $\frac{1}{4}$ of the bag.
What weight of sweets will each child receive?
\square Find $\frac{2}{3}$ of 1 hour.
Use the clock face to help you.

Year 3 | Spring Term | Week 10 to 11 - Number: Fractions

Fraction of an Amount (3)

Reasoning and Problem Solving

Mo makes 3 rugby shirts.	150 cm
Each rugby shirt uses 150 cm of material.	This is $\frac{1}{4}$ of his original roll of material.
He has a 600 cm roll of material.	
How much material is left after making the 3 shirts? What fraction of the original roll is left over?	

Alex and Eva share a bottle of juice.
Alex drinks $\frac{3}{5}$ of the juice.
Eva drinks 200 ml of the juice.

One fifth of the juice is left in the bottle.
How much did Alex drink?

What fraction of the bottle did Eva drink?

What fraction of the drink is left?

Alex drank
600 ml of the juice.

Eva drank one fifth of the juice.

The fraction of juice left is $\frac{1}{5}$ of the bottle.

